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Abstract—The propagation characteristics of multiple coupled
rectangular dielectric waveguides are investigated through an
integral equation analysis. In contrast with the widely used
subdomain-basis Galerkin’s method, in this work a novel set of
entire-domain basis functions is introduced. This set consists of
plane wave functions that satisfy Maxwell’s equations in each
guiding region, therefore representing a proper expansion system.
The simple form of the basis functions employed enables the
accurate numerical evaluation of the spectral integrals, by means
of an efficient asymptetic extraction technique. It is found that
the computed dispersion curves presented for various single and
coupled waveguides compare very favorably to published results
of other methods. Finally, leakage effects in lossy waveguides are
numerically treated for the first time, in view of mode transitions
from leaky to bound regime. The technique presented in this
paper is accurate, though conceptually simple, and can deal with
a wide variety of integrated circuits and multilayered substrate
configurations. It is also demonstrated that its main advantage is
superior computational efficiency, since very satisfactory results
are obtained with only a few expansion terms.

1. INTRODUCTION

HE RECTANGULAR dielectric waveguide (RDW) [1],

being the fundamental building block of several compo-
nents, plays a very important role in the field of integrated
optics [2]. Practical integrated transmission lines like rib and
channel guides, as well as directional couplers, are constructed
by immersing one or more RDW’s within a layered dielectric
surround. In these devices, the RDW provides the transmis-
sion medium to confine and direct optical signals. The rapid
development of millimeter and submillimeter-wave monolithic
integrated circuit technology has also extended its potential
applications to lower frequency regions [3].

Techniques for analyzing dielectric waveguides have been
well-addressed in the literature. Among the more rigorous
techniques, we mention finite element methods [4], mode
matching methods [5]-[6], variational methods [7] and electric
field integral equation (EFIE) methods [8]-[16]. Since EFIE’s
are the subject of this paper, a more detailed overview of
these methods is presented. The EFIE in its standard form,
also referred to as domain-integral equation, considers the
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RDW domains as local perturbations of the configuration,
replacing them with equivalent polarization currents [8], [9].
Then, the electric dyadic Green’s function is used for the
integral representation of the field in the layer in which the
RDW’s are embedded [10]. Because of their rigorous full
wave formulation, EFIE’s are capable of treating both open
and closed structures and describing physical effects like mode
leakage. It should be mentioned that different approaches
have also appeared in the literature. In [11], a boundary
integral equation is developed, while in [12] higher-order
boundary conditions are enforced to derive an equivalent one-
dimensional integral equation.

In this paper, the standard EFIE is employed and is subse-
quently solved using Galerkin’s method. Most of the existing
implementations of this method are based on the use of
pulse subdomain basis functions [9], [10], that require a fine
segmentation of the guide cross-section. As a consequence,
a large number of unknowns is introduced, which renders
the results either unstable or numerically costly [12], [13].
Furthermore, a subsectional expansion is not proper from
physical point of view, since the discontinuous variation of
the electric field creates fictitious charges and currents on
the boundaries of the subdomains. In order to overcome the
aforementioned drawbacks, a novel set of entire-domain basis
functions appropriate for RDW’s is developed. This set is
constructed by discretizing an exact integral representation
of the electric field inside each guiding region. The simple
plane wave functions derived satisfy Helmholtz’s equation,
therefore representing a physical expansion mechanism, valid
for both lossy and lossless materials. Even though the model-
ing of RDW’s with entire-domain expansion terms has been
suggested elsewhere [8], [13], [15], the systematic implemen-
tation of plane wave basis functions for the solution of the
EFIE is believed to be new. Besides the accuracy and the
simplicity of the proposed method, its major advantage lies
in its numerical efficiency, since very satisfactory results can
be obtained using only a few expansion terms. Waveguides
of more complicated cross-sections can also be analyzed,
provided that they can be decomposed into a number of
RDW’s.

In Section II of this paper, the general formulation of the
problem is presented. A set of entire-domain basis functions
for the modeling of RDW’s is introduced in Section III and
Galerkin’s method is applied. In Section IV, the elements of
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Fig. 1. Cross-sectional view of the configuration of L RDW’s positioned
above a grounded double dielectric layer substrate.

the coefficient matrix are derived in terms of infinite spectral
integrals. In order to compute these integrals accurately and
efficiently, an asymptotic extraction technique is developed
and demonstrated. Finally, in Section V some numerical
results are presented for coupled RDW’s of both equal and
unequal size, and are compared with published results of
other methods. Leakage characteristics of a strip dielectric
guide are also examined and special emphasis is placed on
the investigation of leakage phenomena in lossy waveguides.
Three appendices provide details on the derivation of the basis
functions and the evaluation of the elements of the system
matrix.

II. FORMULATION OF THE PROBLEM

The geometrical configuration and coordinate system of
the waveguide considered in the analysis are depicted in
Fig. 1. The whole structure is assumed to be uniform along
the propagation direction y. The guiding region consists of
a number L of rectangular dielectric waveguides (RDW),
that are in turn embedded in layer (0) of a planar stratified
background medium. This can be any layered configuration
with or without ground planes, or it can be an enclosed
partially filled waveguide geometry. For simplicity, Fig. 1
shows a grounded double layer substrate, where domain (0)
in which the RDW’s are located is semiinfinite.

The position of the 4th RDW with width £, and height £}, is
defined by its cross-section center coordinates (z, z),while
its constant relative permittivity is denoted by £{*. The homo-
geneous domains (0), (1), and (2) of the surrounding are also
characterized by their relative permittivities €,9,€r1, and €.,
respectively. All media are assumed nonmagnetic. Symbols
€, and p, stand for the electric and magnetic constants in
vacuum. To include losses, the permittivities are considered to
be complex in general. A wide variety of practical integrated
circuits can be constructed from the topology of the waveguide
described above by changing the number L of RDW’s and
their geometrical and electrical parameters.

In the absence of exiernal sources, time-harmonic solutions
of the Maxwell’s equations in the structure of Fig. 1 are
sought by considering the electric fields in the domain of the
RDW’s as equivalent polarization currents [8]-[9]. Omitting
the exp(jwt) time factor, the electric field in layer (0) can
be written in an integral form [10] with kernel the dyadic

2795
Green’s function G(r 7), a

—kzz&m / / / () dv(E)
where de,., = 8£i) — &r0, by = wy/Eult, and V; is the

space occupied by the ith RDW. Integration in (1) must
be performed in the principal value sense [17], in which an
exclusion principal volume needs to be specified. This concept
is inherent [18] in the following spectral representation of

G(F,7) |
~ (2#)2 // Gkar by 2, )

i ko (z=2)thy (y=1")) gp dk, — %5(7 ~7).
0
@)

The first term on the right-hand side of (2) is the eigenfunc-
tion representation of the principal value part of G(7,7'), with
a disk-shaped exclusion volume, while the delta-function term
corresponds to the depolarizing dyad [17]-[18].

The spectral dyad g(k., ky; 2, 2') in (2) can be derived using
well known procedures [10], [19] and, as usual, it decomposes
into a primary and a secondary part (3 =3 + 9 ). The
explicit forms pertaining to the geometry of Fig. 1 are given
by

Epr(kw’ ky3 2, ZI) :EZ(kwa ky)ejk"’(z_z/)u(z' — z)
+ 53(’%7 ky)e‘jkzo(z—zr)u(z _ zl) (3a)

al
=3

E_sec(kw ky; 2, Z/) :El(kx’ ky)e—]'kzo(Z-l—z/) (3b)
where
3 —j — kig —kxky :Fk'mkzO
9a(3) = EYSTaN —koky kg — k§ Fhykzo “)
0hz0 Fk.k.o :Fk k2o k;2>
_ _j +k2k2/k2 —kokyk /k2 0
0 =577 R™E kkkbmﬁ +%k%k2 0
0Fz0 0 0 0
k2k20/k2 —kzk k‘?o/k2 kzokz0
+R™ |k, ky k /k2 —k;k /k2 kyk-o
—k kzo —kyk=o ’“3

®)

In (3a), u(L£(z — #’)) denotes the unit step function. The
following parameters and functions have also been introduced

ko = kU\/ET-O, kzo = 1/’4}(2) - k% (6)

The branch cut of the double valued square root k.o is
chosen to lie along the line Im(k,o) = 0, and the proper
Riemann sheet is defined by requiring Im(k.o) <0 [20].
Equations (3b) and (5) apply for structures in which the
region (0) is semiinfinite. The effects of the layered substrate
are incorporated into the formulation (5) through the spectral
reflection coefficients RT® and R™ of TM and TE waves
that are incident upon the boundary at z = d from region

— 1.2 2
k2 =k2+k,,
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(0). The analytical expressions of ™ and RT¥ are given in
Appendix A for configurations with or without a ground plane
at z = 0 (Fig. .1). Due to shortage of space, the secondary
dyad of covered structures is not included in the paper.

The analysis is next devoted to the investigation of guided
modes of the form E(7) = &(p)e 7P¥, where § is the
propagation constant along the y direction and p = zz + 22.
We denote by €;(p) the field on the cross-section S; of the
ith RDW, ie., €,(p) = &),p € S.. In this case, (1) in
conjunction with (2) reduces to
2

k2
€i(P) + ¢ 5 erg2e;.(P)

kQZésm// dz’ d2
(/ dk, e?*==G(k,, ﬂ,zz)) &(?),

7ES,. @

The field g;(7) on the jth RDW, increased by the source
dyadic term (left-hand side), is thus expressed as superposition
of fields contributed by the polarization currents (jwée,;€;(7))
in all the RDW’s (right-hand side).

If (7) is written for § = 1,2,---, L a coupled system of L
integral equations is formed for the unknown field distributions
€(p),i =1,2,---, L. It should be mentioned that this system
is quite general in the sense that no assumption has been
made for the number L of the RDW’s and their positions.
Furthermore, the cross-section of the guiding regions need
not be rectangular in shape. In the next section, we turn to
a Galerkin’s solution of the system in (7) using entire-domain
basis functions.

II1. ENTIRE-DOMAIN BASIS GALERKIN’S SOLUTION

The effectiveness of a method of moments numerical solu-
tion for (7) depends on a judicious choice of basis functions.
These functions should incorporate as closely as possible the
physical conditions of the actual electric field on the cross-
sections S; of the RDW’s (Fig. 1). In this work, instead of
using subdomain functions, we employ entire-domain basis
functions for expanding the unknown fields and for testing the
results (Galerkin’s method). The first step in the development
of a proper set of expansion terms, is to enforce the electric
field €,(p) to satisfy the appropriate homogeneous Helmholtz
equation. It is found (Appendix B) that in the source-free
region of the «th RDW the following integral representation
holds

2(z,2) = /0 " exp(Gui(8)[(cos g (z—73) + sin g (2 — )
6z(¢k) d¢k> (Ilf,z) € S’L ®)

where

B = k, w() = /BOR - ©

The representation in (8) expresses the electric field in the
ith RDW as a bundle of waves with wavenumbers u;((),
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amplitudes C,(¢,), and directions varying from ¢ = 0 to
¢r = 2. This concept has first been dealt with in [21], whete
a general proof is given for solutions of Laplace’s equation.
It is pointed out that (8) also applies for lossy structures and
leaky modes, cases in which the factor u,(3) of (9) is complex.

Equation (8) can be utilized to develop entire-domain basis
functions for the unknown field &,(7) on the cross section
S;. To this end, the integral in (8) is discretized and it is
approximated by a finite summation over V; angles ¢}, in
the range [0, 2x]. This set of spectral angles may be chosen
according to the following rule

Gin = Op, = (1510—}-]2\?(77,—1), n=1,23,---,N; (10)
where the offset angle ¢, is usually zero. When convergence
in the solutions is reached by using sufficiently large numbers
N, in the angular sampling (see Section V), the results are
insensitive to this offset.

Next we set

ko = w(B)sin(din),  Kin = ui(B)cos(¢un),

67,71 :61(¢m) (lla)
Fl,2) = £2,(0) - Faa(2), fE@) = el
fo(z) = efFenE=50), (11b)

Finally, the electric field €,(p) is expressed in terms of N,
basis functions as

N,
= Z Confin(z, 2)
= 2 Z

a=z,y,z n=1

fzn z Z) (.’L',Z) €Ss,. (12)

It has therefore been introduced through (10)—(12) a novel
set of entire-domain basis functions, appropriate for RDW’s.
This set constitutes a proper expansion mechanism, since its
members satisfy the homogeneous vector wave equation. A
remarkable and unique feature of these functions is their
explicit dependence on the wavenumber 3, through the term
ui(8) of (9).

In the Galerkin’s method of solution, the expansion field
of (12) is substituted into the system of integral equations (7)
and the result is tested with 37, (p). This means that the inner
products of both parts of (7) with & * . (P) are integrated over
the cross section S;. The asterisk (*) denotes complex conju-
gate. The above procedure is applied for j = 1,2,---,L,m =
1,2,---,N;, and s = z,¥, z. Thus, an homogeneous algebraic
system of equation is formed with unknown functions the field
coefficients C¢, for ¢+ = 1,2,.--,L,n = 1,2,.-.,N;, and
a = x,y,z. This system can be written symbolically as

Yy Y

)0, =0 (132)

i=1 n=1a=x,y,z

and in a more compact form
F-C=o0. (13b)



ATHANASOULIAS et al.: AN ENTIRE-DOMAIN BASIS GALERKIN’S METHOD FOR THE INTEGRAL EQUATION ANALYSIS OF DIELECTRIC WAVEGUIDES

The total number of unknowns is Ny, and the order of the
system matrix F is Niot X Niot, Where
Niot =3 (N1 + Ng+ -+ + Np). (14)
The analytical expressions of the elements F2% (j,4) of the
system are given in the next section. To obtain a nontrivial
solution in (13), the determinant of the coefficient matrix F'
must vanish, leading to discrete solutions for the propagation
constant 3.
In constructing the set of basis functions (11), Gauss’ law
- has not been used yet. If we impose this law on the field of
(12), we obtain
V- (@ilw,2)e=I) =0 = KL, CF, + KL,,C5, — BCY,
=0, n=12-. N (15)

Using the above condition, (13) is rewritten as

L N, .
»y { [F%Z(j, i)+ ﬁ%(mw} ez,
=1 n=1 /8
i {Fs;(j, i+ Lo Fzzz(j,i)} Cfn} —0. (16

Thus, the number of unknown field coefficients in the ¢th
RDW reduces from 3N; to 2N; and the new system matrix is
formed by selecting [13] the transverse components (s = z, 2)
of (16). The validity of the above procedure is ensured by the
fact that the transverse components of the EFIE (7) yield a
unique description of the guided wave modes [14].

The analysis presented above can easily be modified to
accommodate, in an elegant manner, structures that are char-
acterized by certain planes of symmetry. Consider for example
the configuration (Fig. 6(a)) of two identical RDW’s that are
symmetrically located about the y-z plane. In this case, a
magnetic or an electric wall can be placed at the plane of
symmetry without affecting the field distributions. The modes
are then designated as even or as odd modes. The symmetry
properties of the electric field can be explicitly incorporated
into the sets of basis functions used. Let N1 denote the number
of basis functions in the left RDW (i = 1) for which the
expansion angles ¢1, are selected according to (10). For its
symmetrical RDW (i = 2) we choose No = NNi and set
Ghan = 2T — ¢1,,. Then, it follows from (11) that fo,(z, 2)
is the reflection of f1,(x,2) with respect to the plane z = 0.
Eventually, by setting C5, = +Cf,, [10], we can specify even
or odd modes. As a consequence, the testing procedure of
Galerkin’s method needs only be applied for the first RDW

G=1
IV. MANIPULATION OF THE SPECTRAL INTEGRALS
A. Analysis

In this section, the final forms of the elements F5% (j,4) of
the coefficient matrix are given. In order to keep the formalism
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Fig. 2. Geometrical configuration of a pair (7,2) of RDW’s for which the
primary integrands of (21) decrease as 1/k2.

simple and avoid lengthy equations, only the key results are
presented. For convenience, the term d¢,., in (7) is incorporated
into the unknown field coefficients C';, . After a straightforward
algebraic manipulation, the elements F:2 (4,%) are derived
successively as

F;zan(jaz) :Ef:n(.]a l) - Dfr?n(]v 7')
sa (q » 1 kg) .

Dmn(.j’l) - E (1 + k—3657‘1652> 51J65aAmn(.]) (18)

Ern(G,) = By (3, 01 + [Ex (7,01 (19)

an

The symbol é;; denotes Kronecker’s function. Equation (19)
suggests decomposing the term E22 (4,4) into a primary and

secondary one, in the same way as the spectral Green’s dyad
in Section II. These terms are given by

k2 0o
(B (5 87 0) = 22 / ks [eqn (ko 4, D)7
27 Jo

(20)
(et (ka3 . DPT ) = 275 (ko 4:8) - [V (ki 4, 8)]775
@)

The functions A,,,(5), Z5%,(k.;4,4), that are involved in
(18)—(21), are given explicitly in Appendix C. As seen from
(20), the terms [E32 (4,4)]P7(*) are defined through infinite
spectral integrals. These can be evaluated numerically by
restricting the unbounded integration interval [0,0c] to the
finite region [0, K], where K is a sufficiently large number.
At this point, it would be beneficial to search for the asymptotic
behavior of the integrands prior to performing the numerical
computations. Due to space limitations, we briefly present the
conclusions of this analytical investigation. The integrands
[e22 (j,)]Pm(>e®) exhibit a rapidly oscillating behavior, whose
amplitude decreases as 1/kZ. For the integer number v it is
found that v > 2, and thus the convergence of the integrals
is ensured. The weakest convergence, v = 2, characterizes
the primary integrands of (21), when pairs (j,4) of RDW’s
are considered with 2] = z} and 2} = 4. Fig. 2 illustrates the
configuration of RDW’s for which the above conditions holds.
Obviously, this also includes the case j = 4.

The dominant asymptotic expression of [e52%, (k.;7,%)]F" is
next sought. that applies to the geometry of Fig. 2. Since ke
is assumed to be very large, i.e., k., > ko, 0, it is plausible
toset 3 = k; = £ = 0 in those expressions where k,
is also involved. This is equivalent to considering the static
case w = 0 [22]-[23]. Using the above assumptions we find
from the expressions shown in Appendix C that the dominant
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asymptotic term [e5% (k,;7,4)]P" reads

[ (s 3, )T =

7
k2k2 " [edfmn cos[( Az, — £ k]

+ e~ I®mncos[(Axj; + 45)kq]
— £ )ks]
— e MWmncos|(Az s +£ ks m

— e¥mncos|(Ax,

(22)
where
-1 (s,a)=(z,2)
n* = { 1 (s,a)=(z,2) (23)
0 otherwise
and (see Fig. 2)
Az =ah—xh, L, =(B+06)/2, L=l —4)/2

(24a)
(kiné; ( ) 5’ )/ 2 (24b)
ifm-e Then? f2 e (—Kin)- (24c)

The function fZ is defined in Appendix C. From (23) it
turns out that the 1/k2 decreasing rate characterizes only the
primary terms for (s,a) = (z,z) and (z,z). The analytical
investigation presented above can be used to speed-up the
numerical evaluation of the integrals. This becomes clear if
(20) is rewritten as

il

/ fesa
o] o

(B (3, D"

v (ks 3,07
(Kas 4, 8)]P"
e (ks 3, 0)]F"

- [esa (km,j, )] )} (25)

and in a more compact form

Brin(3,9) = B mn(3:8) + Efymn (3 8) + Efloymn (4,2)-
(26)

Thus, the initial integration decomposes into three parts.
For the sake of simplicity, indices m,n,s,a,7, and ¢ are
suppressed in the following discugsion. The lower limit k,
of integration in the terms E(gy and F(;¢) of (25) is chosen to
be equal to k,. The efficiency of the present method depends
critically on the availability of exact forms for the term Eq.
Fortunately, this can be computed analytically to give

E(o) an v {eJ¢mnA(A;1;ﬂ — f;, kmO)

+ 6_J¢m"A(ALL‘]z + ﬁﬂ, Exo)
— eMVmn A(Azy; — £, kao)
_ e—jwi,inA(Am“ + gw kz0)}

@7)
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where we define

> cos Ak
AMA, kyo) = / dk, 2520
( 0) oo kz
s Ak AT L Siaky,)  28)
Fmo )
and
/ Sl—ntdt (29)

Si(£) denotes the sine integral function that can easily be
estimated with very small error [24].

To end up with the theoretical examination of the integrals
defined in (20), we briefly investigate their pole singulari-
ties. The secondary integrands [e2%, (k,;7,%)]°° may have a
number of poles that are associated with the roots of the
denominators of the reflection coefficients ™ and R™F
(Appendix A). These in turn correspond to the TM and TE
modes supported by the surrounding [19]. The fundamental
substrate mode with propagation constant kg is the most
important to the propagation phenomena in the waveguide.
Its associated poles k. in the complex k,-plane are given by

k2, = k* — 8% = kys = £/K2 — 2. (30)

It is well known [6], that real propagation constants 3 of
the transmission line are possible only if 3> ks. Otherwise
leakage occurs, resulting in complex wavenumbers 3 with
negative imaginary parts. More rigorously, a transmission line
mode is leaky if the following conditions [23] are satisfied

Re(k2,)>0, Im(k2,)>0 (31

The symbol of ‘=" in the last inequality defines the point
where leakage effects turn on. This is seen as the crossing of
the real k, axis by the poles k., (Fig. 3). In this case, the
integration path must be deformed in the complex k,-plane
in order to circumvent the surface wave poles [25], as shown

in Fig. 3.

B. Numerical Examples

In order to demonstrate the applicability of the asymptotic
extraction technique, as well as its numerical efficiency, we
examine a specific waveguide configuration. Consider a single
RDW of height ¢1 — 11 = 0.45 cm and width w = 3 cm,
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Fig. 5. Comparison between the speeds of convergence of a direct numerical
mtegration and of the asymptotic technique of Section IV for the term
[EZZ(1,1)]P7 of (25).

which is mounted on a grounded dielectric slab of thickness
tr1 = 0.38 cm. This is a special case of the coupled insulated
image guides shown in Fig. 6(a), when the separation distance
s is zero. To make the example more general, the dielectric
materials are assumed lossy with complex permittivities ¢, =
(2.62—40.001)e, and g5 = (2.55 — 50.001)e,, (see Fig. 6(a)).
The number of basis functions used is Ny = 6 and the
elements of the system matrix are evaluated for the normalized
propagation constant 3/k, = 1.57 — 50.0005. The results
presented below, concern the (arbitrary) case m = 3 and
n = 5. Obviously, j = ¢ = 1.

Fig. 4 plots the real part of the primary integrand of (21) for
(s,a) = (z,z) in the normalized (to the free space wavenum-
ber k) region [10-30]. The dominant asymptotic expression
of (22) is also depicted and it is essentially indistiguishable
from the exact integrand. The dashed line corresponds to their
difference multiplied by 10. It is clear that e(k,,) very closely
approximates the exact function e(k,). Consequently, it is
anticipated that their difference (term Eqgy in (25) and (26))
would be a strongly convergent integral.

Fig. 5 compares the speeds of convergence of the primary
integral [E5¢(1,1)]P" between the cases of a usual numerical
evaluation and that of the developed asymptotic extraction
technique. In the latter case, convergence to the third decimal
point is achieved for much smaller values (<40) of the
normalized upper limit K, of integration. Evidently, this
contributes to great economy in computation time. The above
discussion concerns only the primary term with (s,a) =
(xz,z). The same conclusions can be inferred for the term
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Fig, 6. The waveguide configurations analyzed in the paper: (a) Coupled
insulated image guides. (b) Coupled unequal rib guides. (c) Strip dielectric
guide.

(s,a) = (z,z), which has a similar asymptotic behavior (see
(23)). The remaining primary integrands, as well as all the
secondary ones, decrease faster than 1/k2 and their numerical
integration needs no special treatment. Finally, it is pointed
out that accurate computation of the elements of the system
matrix is of paramount importance in the root seeking process,
especially when Muller’s method is used to find out solutions
in the complex plane.

V. RESULTS AND DISCUSSION

The method described above was implemented to calculate
propagation constants and fields for the fundamental and
higher order modes of several integrated circuits. A first
application of this method is given in [16], where a stack of
two RDW’s is analyzed and the presented results are found to
compare very closely to those of a mode matching technique
[5]. Additionally, in this paper we examine the structures
shown in Fig. 6. The mode nomeclature adopted is that of
[1]. Thus, modes are designated as E, if the z component
of the electric field dominates and as Ej  if this is true for
the z component. The subindex p and ¢ indicate the number
of maxima of the dominant field component in the z and z
directions, respectively.

As a first example, we consider the coupled insulated image
guides of Fig. 6(a) with parameters: f = 30.23 GHz,¢; =
083 cm,f;; = 038 emow = 1.5 em, e, = 2.62¢,,65 =
2.55¢,, and €. = &,(e, denotes the dielectric constant in
vacuum). The normalized propagation constants 3/k, of the
even and odd Ef; modes are plotted in Fig. 7(a) versus the
separation distance s. Both modes are nonleaky, since the
wavenumber k/k, = 1.4918 of the fundamental TM substrate
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Fig. 7. (a) Normalized propagation constants 3/k, versus the
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tr = 0.83 cm.typ = 0.38 cm, w = 1.5 cm.gg = 2.62¢y, ¢5 = 2.5b&y,
and €. = €,. (b) Convergence of the results of (a) versus the number IV
of basis functions for s = 1 cm.

mode is less than those in Fig. 7(a). For comparison, the results
of [10] are also included in Fig. 7(a). These were obtained us-
ing pulse subdomain basis functions. The curves of the present
computation appear to be slightly shifted above those of [10].
This discrepancy may be attributed to the different nature
of basis function used, as well as to the different computer
implementations. However, the maximum relative difference
observed is less than 0.1% and consequently the agreement
between the methods is considered to be satisfactory.

Fig. 7(b) shows the variation of the propagation constants
of Fig. 7(a) versus the number (N = N; = Na) of basis
functions used, when s = 1 cm. In seclecting the basis
functions, the symmetry of the structure is taken into account,
as described in the last paragraph of Section III. It is observed
that both modes converge simultaneously. Convergence to
within 0.01% is achieved using only 8 basis functions. In this
case, the total number of unknowns ig 3 - 8 = 24, reduced to
2:8 = 16 if Gauss’ law (15) is applied. Clearly, these numbers
are by far smaller than those required in a subsectional basis
Galerkin’s solution [9]-[10]. The efficiency of the present
technique lies in the fact that the unknown field and the
entire-domain expansion terms satisfy the same physical laws.
Finally, it is pointed out that the results of Fig. 7 can also be
obtained without assuming a priori any symmetry in the fields,
at expense of course of the computation time. This shows
another attractive feature of the entire-domain basis function
developed: No initial information needs to be provided for the
electric field distributions.
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Fig. 8. Normalized = component of the electric field on the right of the
coupled RDW’s of Fig. 6(a), when z = (41 + #11)/2 and s = 0. (a) Even
mode. (b) Odd mode. The solid lines correspond to the (a) Ef; and (b) E3,
field patterns on the right half of a single guide of width 2w = 3 cm.

An interesting conclusion that can be inferred from
Fig. 7(a), is that for small spacings (s < 1 cm), the differences
of even and odd mode wavenumbers from the single strip
propagation constant (marked with a triangle) are not equal,
as the coupled mode theory [2] assumes. Furthermore, when
s decreases to zero the modes finally end-up to the E%; and
E3, modes of an insulated image guide of width 2w = 3
cm. (Note that this case was treated in Section IV where the
convergence of the spectral integrals was established). The
transition from a configuration of two RDW’s to a single one
of the double width is seen to be continuous, indicating that the
present method can accurately model the dispersion behavior
of strongly coupled systems. This will be also demonstrated
for the associated field distributions.

Fig. 8 presents the normalized dominant z component of
the electric field on the right of the RDW’s of Fig. 6(a),
when s = 0 and z = ({1 + ¢11)/2. The even mode field
distribution is depicted in (a), while the odd one is depicted
in (b). In producing these plots, the number of basis functions
was increased from N = 5 to N = 8. Convergence in the
field patterns is reached using only 7 basis functions. Fig. 8
also shows the computed (a) Ef; and (b) F3; field profiles
(solid lines) on the right half of a single guide of width 2w =
3 cm. The latter coincide with the corresponding fields of the
even and odd Ff; modes of the coupled system considered
above for s = 0.

As a next application, the two unequal coupled rib guides of
Fig. 6(b) are considered with parameters: d = 0.9 pym, D =
1 pm,L =3 pm, L' =4 pm,ny = 3.44,n, = 3.40, and
n. = 1.0. A wavelength of A\, = 1.15 pum is assumed.
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Fig. 9. Variation of the normalized modal indices V' = [(3/ky)?
— nf]/[n? — n2] of the first two Ef; modes as a function
of the guide spacing s for the coupled nonidentical rib guides of Fig. 6(b):
Av = 115 pm,d = 0.9 pm,D = 1 pm,L = 3 pm,L' = 4 pm,
ng = 3.44, ns = 3.40, and n. = 1.0.

Fig. 9 shows the variation of the normalized modal indices
V = [(8/ky)? — nZ]/[n2 — nZ] of the first two Ef; modes as
a function of the guide spacing s. The presented results were
derived using 9 basis functions for each RDW and compare
very closely to those of a variational method [7]. Since the
structure is not symmetric, the modes cannot be divided into
even and odd modes. Only if both guides were identical, would
these two fundamental modes have even or odd symmetry. For
sufficiently large spacing s, the two modes decouple and tend
to the E7, modes of two isolated guides of widths L = 4pum
and L = 3 pm, respectively.

As a last example, the authors studied the dispersion char-
acteristics of the strip dielectric waveguide of Fig. 6(c) with
parameters t1 = 0.82 cm, ;7 = 0.5 cm,w = 0.65 cm,e, =
2.55e,,e5 = 2.62¢,, and ¢, = &,. Fig. 10(a) shows the nor-
malized real parts 3, /k, and Fig. 10(b) shows the imaginary
parts log(a/k,) of the propagation constants 3 = £, — jo of
the E#; and E¥, modes, when the free space wavenumber &,
is varied. The fundamental TM and TE substrate modes are
also displayed. It is seen that the E¥; mode is bound while
the Ef, mode is leaky since its dispersion diagram lies below
of that of the TM substrate mode. The results of the present
method have been obtained using 7 basis functions and give
excellent agreement with results in [10], for both propagation
and attenuation constants.

Finally, due to theoretical interest, we investigate the tran-
sition of the E7; mode of Fig. 10 from leaky to bound regime
when losses in the materials are introduced. It is assumed that
(see Fig.6(c)) ey = 2.55(1 — jtand) and e, = 2.62(1 —
jtand), where tané stands for the loss tangent. The free space
wavenumber is fixed at k, = 6 cm™!. Fig. 11(a) depicts
the variation of the attenuation constants log(a/k,) of the
modes of Fig. 10, versus log(tan §). It is observed that the
attenuation constant of the E%, mode increases linearly with
log(tan 6). On the other hand, the attenuation constant of the
Ef, mode presents a different behavior. For small material
losses (log(tan §) < —4) it remains constant indicating that the
dominant attenuation mechanism is leakage to the fundamental
TM substrate mode. When log(tan §) becomes larger than
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Fig. 10. Dispersion diagrams of the first two modes on the strip dielectric
guide of Fig. 6(c): t1 = 0.82 cm,t;;y = 0.5 cm,w = 0.65 cm,
€y = 2.556,,65 = 2.626,, and €; = &,. (a) Real part Br/ky of the

propagation constant. (b) Imaginary part log(—Im(3)/k.) = log(a/ky).

—2, then it increases linearly showing that material losses
dominate. In the intermediate region, the £7; mode turns from
leaky to bound state. This is accompanied by the migration of
the poles k,, of (30), from the first and third quadrants of the
complex k, plane (Fig. 3) to the fourth and second quadrants,
respectively. To study this transition, we plot in Fig. 11(b)
the imaginary part Im(%,s) of the corresponding pole ks on
the right half %, plane, as function of the loss tangent. It is
observed that for tan § = 0.01 this is zero and for larger
losses it becomes negative rendering the £, mode non leaky.
At this point, it should be mentioned that a pole in the first
(fourth) quadrant is associated with exponentially increasing
(decreasing) fields in the transverse z-direction [11]. For the
parameters of Fig. 11, the real part of the pole k.. is almost
constant: Re (k,s) = 0.5742. The crossing of the real &, axis
by the poles does not cause any trouble in the evaluation of
the integrals, provided that the integration path is chosen as
in Fig. 3. This transition was shown in the above discussion
to be continuous.

VI. CONCLUSION

An accurate and efficient integral equation analysis of
coupled rectangular dielectric waveguides has been presented.
The novel concept in this approach lies in the implementa-
tion of a proper set of entire-domain basis functions. These
functions have the simple form of plane waves and satisfy
the appropriate physical laws. In the numerical application
of Galerkin’s method, an asymptotic extraction technique is
employed to speed-up the evaluation of the spectral integrals.
For the demonstration of the present method, single and
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coupled dielectric waveguides are treated for various substrate
configurations. Leakage effects in lossy waveguides are also
investigated. Where comparisons are available, it is found that
this technique yields results which compare very closely to
those of other methods.

As revealed through the numerical examples, the expansion
set introduced in this paper is global in the sense that it
facilitates the modeling of both lossy and lossless guides
as well as bound and leaky waves. Even or odd modes
can also be specified although non a-priori information on
the field distributions is necessary. In addition to the rapid
convergence of the spectral integrals, the small number of basis
functions (<10) needed to provide accurate results, contributes
to a significant reduction in the computation time. The above
advantageous features make the proposed set of basis functions
very attractive for the modeling of integrated circuits. Further
research is being carried out to extend the method to three
dimensional structures and anisotropic waveguides.

APPENDIX A

The reflection coefficients R™ and RTE for the structure
of Fig. 1 are given below

A - By i2ka0d  RTE _ Cr+ Dy oi2keod
AI—I-BI ’ CI D1

€1
Ar =k {’%16102 - s_kz2$231:|7
2

R™ — (A1)

B =j§9kz1 [E—lkz25201 + kz10231:| (A2)
€1 &9
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Ct = jk.olks18201 + koocos1],

Dy =k1[k,18281 — kyacaci] (A3)
where

ko =4 /k2 — k2, k= w\/Eullubr, ki =k24 k; (A4)

s, = sin(k..d;), ¢ = cos(k,,d,). (A5)

In the case of a structure with semiinfinite substrate (that
replaces the ground plane in Fig. 1) of dielectric permittivity
eg it is found that

A — Bu _jop, ol RTE _
AII+BII

A =k { k.2

Cu— Dn e%hd (AG)

RTM
Cu+ DII
€1

E—kzlclcz - g—g—kzzswzjl
| €0 0€2

+ jk.s3 6—2]9216182 + a—lkzzslcz } (A7)
€0 €0 |
- .
By = kzl{k;zi% k.ocico — akuslsz]
. 8 € )
+ Ghaz | —kaac182 + —ka18160 } (A8)
&2 €1 |
Cr1 = kyo{kzalk.1c102 — kr25182]
+ jk.slk.1c182 + ka2s102]} (A9)
D =k 1 {k.slkz2c100 — kz18159]
+ jkaalk.oc182 + kp1s1ca]} (A10)

APPENDIX B

In this Appendix, the (8) of Section III is derived. €;(z, 2)
denotes the electric field in the sth RDW. We begin with the
definition of a Fourier transform pair as

Lo ,
€ (z,2) = W// b, (ky, ks )et*e®ed*e% gl dk,

(A1)
Bk, ky) = // ez, 2)e T eIRA dr dz. (AL2)
S,

The electric field vector &;(p)e 7Y must satisfy the homo-
geneous Helmholtz’s equation for the ith RDW, therefore

(vi,z + u?(ﬁ))éi(xﬂ Z) :07
(k@2 - 82, kO = /e eDpu,. (A13)
Substitution of (Al1l) into (A13) gives
/ (<2 = B2 + 02(9)i(h, )
- glkomerh=z gp dk. = 0. (A14)

Thus, a non trivial solution can only be obtained if the
following condition holds

E2 4+ K2 = 42(B). (A15)
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Equation (A15) suggests writing the spectral variables k,
and k, as

Ko (k) = w(B)sin dp, Kki(dr) = u.(8)cos .

Taking into account the above expressions, the double
integral of (A11) is converted into a single one with integration
variable the spectral angle ¢j. If we introduce a new integra-
tion coefficient C,(¢y) instead of Ei(qﬁk), (A11) transforms
to

(A16)

2w

g(z,2) = C. (g )edFs=(@r)@—e0) gk (61)(z=25) gg,

(A17)

APPENDIX C
The functions A (5), Z5t, (ke §,1), and v, (ks §,4) of
Section IV are computed here

An() = / 0% 2 {2 (@) (Fm(2))* F2(2) [ (2)
S

= eIt S e an) 25 fo (R ,.)*) Fr (kL))
(A18)
Lo (ki3 5,8) = G (k) % G (%)
+ for (s,a) = Ewaw),((y,y)» (y,2),
z,u), (2,2
WSt o0) = (n. 00 (5, 0 (01),
(z’x)
(A19)
Balk) = Fi oy (k) - fi (k) (A20)
where we define for ¢ = z or 2
RICR"

Py (€) = e
PETRE Gl (kg)* — €]

. {ej[i(kfm)*—f]q% — ilE(ky,)" —Elg] 1. (A21)
The general expression for the factor [y3%,]P"is

[’Ymn]pr(kwm% )=g§a(k )IZmn( )+93a(k ) 3mn( )

(A22)
where
gy ks / ety e [ g
21
C TR0y (5 — o). (A23)

Due to the presence of the unit step function u(+(z—2')) in
the double spatial integral of (A23), the value of /53y depends
on the relative positions of the RDW’s 5 and ¢. We consider
the foIlowing cases for the pair (j,7):

[a] z] > 2% (RDW no. j is located above RDW no. i)

I2mn(k; ) =0, 3mn(k ) ) ' fizn(_kzo)
(A24)

[b] 2% > z} (RDW no. j is located below RDW no. i)

Ig:nn(k-’l) = N;(—m)* (—kz()) . fzz':n(kzo)’ I3m'n.(kw) =0
(A25)

J(—m)*(
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[c] 2 = 25,20 = 2t (Fig. 2)
e~ Ikn 7
I kp)=—m——
R aewy
’ {e][kzn—km]zg sz(—m)* (__kzo)—sz(—m)* (~k;n)}
(A26)
e_jk;nz(;
I ) = J kzn+k20]zl .
3mn(k ) [kt +kz0]{ e ](—m) (k )
Finally, the secondary term [yZ2 ] is given by
[l * (a3 5, 6) = 93 (ko) g (),
Bpn (ko) = Fmy (kz0) - 7 (ks0).  (A28)
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