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An Accurate and Efficient Entire-Domain Basis

Galerkin’s Method for the Integral Equation Analysis

of Integrated Rectangular Dielectric Waveguides
G. Athanasoulias, Student Member, IEEE, and N. K. Uzunoglu, Member, IEEE

Abstract—The propagation characteristics of multiple coupled

rectangular dielectric waveguides are investigated through an

integral equation analysis. In contrast with the widely used

subdomain-basis Galerkin’s method, in this work a novel set of
entire-domain basis functions is introduced. Thk set consists of
plane wave functions that satisfy Maxwell’s equations in each

guiding region, therefore representing a proper expansion system.
The simple form of the basis functions employed enables the
accurate numerical evaluation of the spectral integrals, by means
of an efficient asymptotic extraction technique. It is found that

the computed dispersion curves presented for various single and
coupled waveguides compare very favorably to published results
of other methods. Finally, leakage effects in Iossy waveguides are

numerically treated for the first time, in view of mode transitions

from leaky to bound regime. The technique presented in this

paper is accurate, though conceptually simple, and can deal with

a wide variety of integrated circuits and multilayered substrate

configurations. It is also demonstrated that its main advantage is
superior computational efficiency, since very satisfactory results
are obtained with only a few expansion terms.

I. INTRODUCTION

T HE RECTANGULAR dielectric waveguide (RDW) [1],

being the fundamental building block of several compo-

nents, plays a very important role in the field of integrated

optics [2]. Practical integrated transmission lines like rib and

channel guides, as well as directional couplers, are constructed

by immersing one or more RDW’s within a layered dielectric

surround. In these devices, the RDW provides the transmis-

sion medium to confine and direct optical signals. The rapid

development of millimeter and submillimeter-wave monolithic

integrated circuit technology has also extended its potential

applications to lower frequency regions [3].

Techniques for analyzing dielectric waveguides have been

well-addressed in the literature. Among the more rigorous
techniques, we mention finite element methods [4], mode

matching methods [5]–[6], variational methods [7] and electric

field integral equation (EFIE) methods [8]–[16]. Since EFIE’s

are the subject of this paper, a more detailed overview of

these methods is presented. The EFIE in its standard form,

also referred to as domain-integral equation, considers the
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RDW domains as local perturbations of the configuration,

replacing them with equivalent polarization currents [8], [9].

Then, the electric dyadic Green’s function is used for the

integral representation of the field in the layer in which the

RDW’S are embedded [10]. Because of their rigorous full

wave formulation, EFIE’s are capable of treating both open

and closed structures and describing physical effects like mode

leakage. It should be mentioned that different approaches

have also appeared in the literature. In [11], a bound~

integral equation is developed, while in [12] higher-order

boundary conditions are enforced to derive an equivalent one-

dimensional integral equation.

In this paper, the standard EFIE is employed and is subse-

quently solved using Galerkin’s method. Most of the existing

implementations of this method are based on the use of

pulse subdomain basis functions [9], [10], that require a fine

segmentation of the guide cross-section, As a consequence,

a large number of unknowns is introduced, which renders

the results either unstable or numerically costly [12], [13].

Furthermore, a subsectional expansion is not proper from

physical point of view, since the discontinuous variation of

the electric field creates fictitious charges and currents on

the boundaries of the subdomains. In order to overcome the

aforementioned drawbacks, a novel set of entire-domain basis

functions appropriate for RDW’s is developed. This set is

constructed by discretizing an exact integral representation

of the electric field inside each guiding region. The simple

plane wave functions derived satisfy Helmholtz’s equation,

therefore representing a physical expansion mechanism, valid

for both lossy and lossless materials. Even though the model-

ing of RDW’s with entire-domain expansion terms has been

suggested elsewhere [8], [13], [15], the systematic implemen-

tation of plane wave basis functions for the solution of the

EFIE is believed to be new. Besides the accuracy and the

simplicity of the proposed method, its major advantage lies

in its numerical efficiency, since very satisfactory results can

be obtained using only a few expansion terms. Waveguides

of more complicated cross-sections can also be analyzed,

provided that they can be decomposed into a number of

RDW’S.

In Section II of this paper, the general formulation of the

problem is presented. A set of entire-domain basis functions

for the modeling of RDW’s is introduced in Section III and

Galerkin’s method is applied. In Section IV, the elements of
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Z+

ground plane

Fig. 1. Cross-sectionat view of the configuration of L RDWs positioned
above a grounded double dielectric layer substrate.

the coefficient matrix are derived in terms of infinite spectral

integrals. In order to compute these integrals accurately and

efficiently, an asymptotic extraction technique is developed

and demonstrated. Finally, in Section V some numerical

results are presented for coupled RDW’s of both equal and

unequal size, and are compared with published results of

other methods. Leakage characteristics of a strip dielectric

guide are also examined and special emphasis is placed on

the investigation of leakage phenomena in lossy waveguides.

Three appendices provide details on the derivation of the basis

functions and the evaluation of the elements of the system

matrix.

II. FORMULATION OF THE PROBLEM

The geometrical configuration and coordinate system of

the waveguide considered in the analysis are depicted in

Fig. 1, The whole structure is assumed to be uniform along

the propagation direction y. The guiding region consists of

a number L of rectangular dielectric waveguides (RDW),

that are in turn embedded in layer (0) of a planar stratified

background medium. This can be any layered configuration

with or without ground planes, or it can be an enclosed

partially filled waveguide geometry. For simplicity, Fig. 1

shows a grounded double layer substrate, where domain (0)

in which the RDW’s are located is semiinfinite.

The position of the ith RDW with width 1: and height l; is

defined by its cross-section center coordinates (z:, .z~),while

‘Z) The homo-its constant relative permittivity is denoted by CT .

geneous domains (0), (l), and (2) of the surrounding are also
characterized by their relative permittivities s~o, e~l, and %.2,

respectively. All media are assumed nonmagnetic. Symbols

EU and p. stand for the electric and magnetic constants in

vacuum. To include losses, the permittivities are considered to

be complex in general. A wide variety of practical integrated

circuits can be constructed from the topology of the waveguide

described above by changing the number L of RDW’s and

their geometrical and electrical parameters.

In the absence of external sources; time-harmonic solutions

of the Maxwell’s equations in the structure of Fig. 1 are

sought by considering the electric fields in the domain of the

RDW’s as equivalent polarization currents [8]–[9]. Omitting

the exp(jwt) time factor, the electric field in layer (0) can

be written in an integral form [10] with kernel the dyadic

Green’s function ??(T, 7’), as

(i)
where 8ETX = CT — GO, /cv = w- and Vi is the

space occupied by the ith RDW. Integration in (1) must

be performed in the principal value sense [17], in which an

exclusion principal volume needs to be specified. This concept

is inherent [18] in the following spectral representation of

E(F, F’)

cc

—cc

(2)

The first term on the right-hand side of (2) is the eigenfunc-

tion representation of the principal value part of ~(F, 7’), with

a disk-shaped exclusion volume, while the delta-function term

corresponds to the depolarizing dyad [17]–[18].

The spectral dyad ~(kz, kv; .z,z’) in (2) can be derived using

well known procedures [10], [19] and, as usual, it decomposes

into a primary and a secondary part (~ = ~sec + ~pr ). The

explicit forms pertaining to the geometry of Fig. 1 are given

by

ZPr(kz,ICY;2, Z’)=7j2(kz, kv)e~k”o(z-z’)~ (,z’– Z)

+ij3(kz,kv)e
_jkzo(z–2’)u(z _ ~’) (3a)

;Sec(kz, kg; z, z’) = ;I(kx, kv)e-~~’o(”+~’) (3b)

where

(4)

In (3a), u(+(.z – z’)) denotes the unit step function. The

following parameters and functions have also been introduced

k.= kv~, k;= k: +k;, kzo = ~k; – k;. (6)

The branch cut of the double valued square root k.o is

chosen to lie along the line Im(kZo ) = O, and the proper
Ri.mann sheet is defined by requiring Im(leZo) <0 [20].

Equations (3b) and (5) apply for structures in which the

region (0) is semiintinite. The effects of the layered substrate

are incorporated into the formulation (5) through the spectral

reflection coefficients RTE and R~M of TM and TE waves

that are incident upon the boundary at z = d from region
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(0). The analytical expressions of R*M and RTE are given in

Appendix A for configurations with or without a ground plane

at z = O (Fig., 1). Due to shortage of space, the secondary

dyad of covered structures is not included in the paper.

The analysis is next devoted to the investigation of guided

modes of the form ~(7) = E(P) e–~~v, where /3 is the

propagation constant along the g direction and F = xi + z.2.

We denote by =~(p) the field on the cross-section S~ of the

ith RDW, i.e., i5,(P) = E(P), P c S,. In this case, (1) in

conjunction with (2) reduces to

~Esl. (7)

The field Zj (p) on the jth RDW, increased by the source

dyadic term (left-hand side), is thus expressed as superposition

of fields contributed by the polarization currents (jU6C,iEi (F))

in all the RDW’s (right-hand side).

If (7) is written for j = 1,2,... , L a coupled system of L
integral equations is formed for the unknown field distributions

Ei(p), i=l,2, ..., L. It should be mentioned that this system

is quite general in the sense that no assumption has been

made for the number L of the RDW’s and their positions.

Furthermore, the cross-section of the guiding regions need

not be rectangular in shape. In the next section, we turn to

a Galerkin’s solution of the system in (7) using entire-domain

basis functions.

III. ENTIRE-DOMAIN BASIS GALERKIN’s SOLUTION

The effectiveness of a method of moments numerical solu-

tion for (7) depends on a judicious choice of basis functions.

These functions should incorporate as closely as possible the

physical conditions of the actual electric field on the cross-

sections S~ of the RDW’s (Fig, 1). In this work, instead of

using subdomain functions, we employ entire-domain basis

functions for expanding the unknown fields and for testing the

results (Galerkin’s method). The first step in the development

of a proper set of expansion terms, is to enforce the electric

field E,(p) to satisfy the appropriate homogeneous Helmholtz

equation. It is found (Appendix B) that in the source-free
region of the ith RDW the following integral representation

holds

[

2n
Z,(Z, 2) = exp(ju~(@)[(cos ~~(,z-,z~) + sin q$~(z-x~)])

o

. C~(#k) d~k, (x, ,?) G s% (8)

where

,() .,.@, .l(,)= J-. (9)

The representation in (8) expresses the electric field in the

ith RDW as a bundle of waves with wavenumbers Ui (~),

amplitudes ~, (@t), and directions varying from fbk = O to

#k = 27r. This concept has first been dealt within [21], where
a general proof is given for solutions of Laplace’s equation.

It is pointed out that (8) also applies for 10SSYstructures and

leaky modes, cases in which the factor u, (/3) of(9) is complex.

Equation (8) can be utilized to develop entire-domain basis

functions for the unknown field E,(p) on the cross section

Si. To this end, the integral in (8) is discretized and it is

approximated by a finite summation over Ni angles dkn in

the range [0, 27r]. This set of spectral angles may be chosen

according to the following rule

$$i. ~ &k. = $ho+;(n– l), n=l,2,3, . . ..Ni (10)
%

where the offset angle @,o is usually zero. When convergence

in the solutions is reached by using sufficiently large numbers

N, in the angular sampling (see Section V), the results are

insensitive to this offset.

Next we set

k~m = u, (/3)sin(#in), kin = ui(~)cos(q+hn),

C.n= Ci(qb,n) (ha)

~t~(z,’) = .ffi(~) “ f~n(~), f~n ($) = e~k~~(z-z;j,

$~n(,z) = e~’~~(’-’~). (llb)

Finally, the electric field E,(p) is expressed in terms of lV,

basis functions as

a=z, y,z n=l

It has therefore been introduced through (10)–(12) a novel

set of entire-domain basis functions, appropriate for RDW’s.

This set constitutes a proper expansion mechanism, since its

members satisfy the homogeneous vector wave equation. A

remarkable and unique feature of these functions is their

explicit dependence on the wavenumber ~, through the term

‘uz(/3) of (9).

In the Galerkin’s method of solution, the expansion field

of (12) is substituted into the system of integral equations (7)

and the result is tested with ;~~m (p). This means that the inner

products of both parts of (7) with ;~~m (p) are integrated over

the cross section Sj. The asterisk (*) denotes complex conju-
gate. The above procedure is applied for j = 1,2, . . . . L, m =
1,2,...,~j, ands = x, y, z. Thus, an homogeneous algebraic

system of equation is formed with unknown functions the field

coefficients C’,?n for z = 1,2, 0.. ,L, n = 1,2, 0.. ,lVi, and

a = x, y, z. This system can be written symbolically as

L N,

i=ln=la=z, y,z

and in a more compact form

——
F. C=O.

(13a)

(13b)
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The total nugber of unknowns is NtOt and the order of the—
system matrix F is Ntot x NtOt, where

lVtOt=3. (Nl+N2+. .+l V~). (14)

The analytical expressions of the elements F:n (j, i) of the

system are given in the next section. To obtain a nontrivial

solution in (13), the determinant of the coefficient matrix ~

must vanish, leading to discrete solutions for the propagation

constant ~.

In constructing the set of basis functions (1 1), Gauss’ law

has not been used yet. If we impose this law on the field of

(12), we obtain

V . (~~(z, .z)e-~pv) =0 ~ k~,c:n + k~nc;m –

=0, n=l,2, . . ..Ni.

Using the above condition, (13) is rewritten as

1
+ ‘F#(j, i) C:n

P

1}k;~(j> i) C:n
P

= O. (16)

Thus, the number of unknown field coefficients in the ith

RDW reduces from 3Ni to 2N~ and the new system matrix is

formed by selecting [13] the transverse components (s = $, z)

of (16). The validity of the above procedure is ensured by the

fact that the transverse components of the EFIE (7) yield a

unique description of the guided wave modes [14].

The analysis presented above can easily be modified to

accommodate, in an elegant manner, structures that are char-

acterized by certain planes of symmetry. Consider for example

the configuration (Fig. 6(a)) of two identical RDW’s that are

symmetrically located about the g-z plane. In this case, a

magnetic or an electric wall can be placed at the plane of

symmetry without affecting the field distributions. The modes

are then designated as even or as odd modes. The symmetry

properties of the electric field can be explicitly incorporated

into the sets of basis functions used. Let N1 denote the number

of basis functions in the left RDW (i = 1) for which the

expansion angles #l. are selected according to (10). For its

symmetrical RDW (i = 2) we choose Nz = N1 and set

~z~ = 27r – ~In. Then, it follows from (11) that ~z~(z, z)
is the reflection of ~lm ($, z) with respect to the plane z = O.

Eventually, by setting C$n = +C:. [10], we can specify even

or odd modes. As a consequence, the testing procedure of

Galerkin’s method needs only be applied for the first RDW

(j = 1).

IV. MANIPULATION OF THE SPECTRAL INTEGRALS

A. Analysis

In this section, the final forms of the elements F#n (j, i) of

the coefficient matrix are given. In order to keep the formalism

x; x;
I Axji
Ii= >’

Fig. 2. Geometrical configuration of a pair (j, z) of RDWS for which the

primary integrands of (21) decrease as l/k~.

simple and avoid lengthy equations, only the key results are

presented. For convenience, the term C$Er% in (7) is incorporated

into the unknown field coefficients C,am.After a straightforward

algebraic manipulation, the elements F:n (j, i) are derived

successively as

F:n (j, i) = E:n(j, i) – D:n(j, i) (17)

‘%(~, ~)= [~%n(j,Z)]p;+[E~~(:j, i)]’”. (19)

The symbol cf~zdenotes Kronecker’s function. Equation (19)

suggests decomposing the term E~an (j, i) into a primary and

secondary one, in the same way as the spectral Green’s dyad

in Section II. These terms are given by

/
[-E?%n(j>q]~”(sec)=~ mdkz[e:n(kz;j, i)]~”(’”)

27r ~

(20)

[e~n(kZ; j, Z)]Pr(sec) = Z~n(kz; j, 2) . [~~’ (kZ; j, i)]pr(sec).

(21)

The functions A ~n(j), Z~n(kZ; j, i), that are involved in

(18)-(21), are given explicitly in Appendix C. As seen from

(20), the terms [JT~n (j, i)] Pr(sec)are defined through infinite

spectral integrals. These can be evaluated numerically by

restricting the unbounded integration interval [0, m] to the

finite region [0, Kc], where Kz is a sufficiently large number.

At this point, it would be beneficial to search for the asymptotic

behavior of the integrands prior to performing the numerical

computations. Due to space limitations, we briefly present the

conclusions of this analytical investigation. The integrands

[e~m(j, i)]~”(sec) exhibit a rapidly oscillating behavior, whose

amplitude decreases as 1/k:. For the integer number v it is

found that v > 2, and thus the convergence of the integrals

is ensured. The weakest convergence, v = 2, characterizes

the primary integrands of (21), when pairs (j, i) of RDW’s

are considered with z: = z? and z; = z~. Fig. 2 illustrates the

configuration of RDW’s for which the above conditions holds.

Obviously, this also includes the case j = i.

The dominant asymptotic expression of [e~n (kr; j, i)]Pr is

next sought. that applies to the ~eometry of Fig. 2. Since km
is assumed to be very large, i.e., kz >> kO, /3, it is plausible

to set D = k~ = k(’) = O in those expressions where kz

is also involved. This is equivalent to considering the static

case w = O [22]–[23]. Using the above assumptions we find

from the expressions shown in Appendix C that the dominant
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where

The function ~ is defined in Appendix C. From (23) it

turns out that the l/k~ decreasing rate characterizes only the

primary terms for (s, a) = (z, x) and (z, z). The analytical

investigation presented above can be used to speed-up the

numerical evaluation of the integrals. This becomes clear if

(20) is rewritten as

Pm

- [a~n(kz;j, i)]p’) ) (25)

and in a more compact form

E%n(.i)+ = q:)mn(i o+Jq:)mn(io+qfo)mn(i 0.
(26)

Thus, the initial integration decomposes into three parts.

For the sake of simplicity, indices m, n,s, a, j, and i are

mppres~ed in the following discussion. The lower limit kmo

of integration in the terms ~(o) and 13(10) of (25) is chosen to

be equal to k.. The efficiency of the present method depends
critically on the availability of exact forms for the term ~(o).

Fortunately, this can be computed analytically to give

lm(k~

kx - plane

I

Low-loss hmit :

Mode in leaky regime

*“
Integration path I

Fig. 3. Integration contour in the complex Icz -plane and migration path from
leaky to bound regime of the poles He.,, when losses increase.

where we define

r cos Akx
A(A, kzo) = dkz T

k=o x

cos ArtZo— ~ + ASi(AkZo)
kzo – 2

(28)

and

(29)

that can easily beSi(f) denotes the sine integral function

estimated with very small error [24].

To end up with the theoretical examination of the integrals

defined in (20), we briefly investigate their pole singuku-i-

ties. The secondary integrands [e~n (kZ; j, Z)]sec may have a

number of poles that are associated with the roots of the

denominators of the reflection coefficients RTM and RTE
(Appendix A). These in turn correspond to the TM and TE

modes supported by the surrounding [19]. The fundamental

substrate mode with propagation constant ks is the most

important to the propagation phenomena in the waveguide.

Its associated poles kcs in the complex kz-plane are given by

k;. =k:–/?2+kz. =*~m. (30)

It is well known [6], that real propagation constants /3 of

the transmission line are possible only if @> k.. Otherwise

leakage occurs, resulting in complex wavenumbers ~ with

negative imaginary parts. More rigorously, a transmission line

mode is leaky if the following conditions [25] are satisfied

Re(k&) >0, Im(k~, ) ~ O. (31)

The symbol of ‘=’ in the last inequality defines the point
where leakage effects turn on. This is seen as the crossing of

the real kz axis by the poles kZ, (Fig. 3). In this case, the

integration path must be deformed in the complex kz-plane

in order to circumvent the surface wave poles [25], as shown

in Fig. 3.

B. Numerical Examples

In order to demonstrate the applicability of the asymptotic

extraction technique, as well as its numerical efficiency, we

examine a specific waveguide configuration. Consider a single
RDW of height tl – tll = 0.45 cm and width w = 3 cm,
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Fig. 4. Plotsof the real partsof the integrand[+: (k~; 1, I)]W (solid line),
its asymptoticexpression(dotted line) and of their difference(dashedline),
versusthe normalized(to ku) spectralvariable km.

— AsymptIntegr,
Red
DnectInte8r.,
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Fig. 5. Comparison between the speeds of convergence of a direct numerical
integration and of the asymptotic technique of Section IV for the term
[E;: (1> l)]pr of (25).

which is mounted on a grounded dielectric slab of thickness

tll = 0.38 cm. This is a special case of the coupled insulated

image guides shown in Fig. 6(a), “when the separation distance

s is zero. To make the example more general, the dielectric

materials are assumed lossy with complex permittivities Eg =

(2.62 -j0.001)e,, and ~f = (2.55 -jO.OO1)eV (see Fig. 6(a)).

The number of basis functions used is N1 = 6 and the

elements of the system matrix are evaluated for the normalized

propagation constant ~/kV = 1.57 – jO.0005. The results

presented below, concern the (arbitrary) case m = 3 and

n = 5. Obviously, j = i = 1.

Fig. 4 plots the real part of the primary integrand of (21) for

(s, a) = (x, ~) in the normalized (to the free space wavenum-

ber kv) region [10–30]. The dominant asymptotic expression

of (22) is also depicted and it is essentially indistiguishable

from the exact integrand. The dashed line corresponds to their

difference multiplied by 10. It is clear that ~(kZ ) very closely

approximates the exact function e( kz ). Consequently, it is

anticipated that their difference (term 13(10) in (25) and (26))

would be a strongly convergent integral.

Fig. 5 compares the speeds of convergence of the primary

integral [r?3~#( 1, l)]~r between the cases of a usual numerical

evaluation and that of the developed asymptotic extraction
technique. In the latter case, convergence to the third decimal

point is achieved for much smaller values (<40) of the

normalized upper limit I-Cz of integration. Evidently, this

contributes to great economy in computation time. The above

discussion concerns only the primary term with (s, a) =

(z, x). The same conclusions can be inferred for the term

z

l-~x F’#-’Fl
EC

&f <&g tI I t~~ ltI &f

ground plane

(a)

/

tz -. A-4-l ‘c

ns

(b)

ground plane

(c)

Fig. 6. The waveguide configurations analyzed in the paper (a) Coupled
insulated image guides. (b) Coupled unequal rib guides. (c) Strip dielectric
guide.

(s, a) = (z, z), which has a similar asymptotic behavior (see

(23)). The remaining primary integrands, as well as all the

secondary ones, decrease faster than 1/k~ and their numerical

integration needs no special treatment. Finally, it is pointed

out that accurate computation of the elements of the system

matrix is of paramount importance in the root seeking process,

especially when Muller’s method is used to find out solutions

in the complex plane.

V. RESULTS AND DISCUSSION

The method described above was implemented to calculate

propagation constants and fields for the fundamental and

higher order modes of several integrated circuits. A first

application of this method is given in [16], where a stack of

two RDW’s is analyzed and the presented results are found to

compare very closely to those of a mode matching technique

[5]. Additionally, in this paper we examine the structures

shown in Fig. 6. The mode nomenclature adopted is that of

[1]. Thus, modes are designated as E& if the z component

of the electric field dominates and as E& if this is true for

the z component. The subindex p and q indicate the number

of maxima of the dominant field component in the $ and z

directions, respectively.

As a first example, we consider the coupled insulated image

guides of Fig. 6(a) with parameters: f = 30.23 GHz, tl =

0.83 cm, tll = 0.38 cm. w = 1.5 cm, Eg D 2.62&U, ~~ =

2.55cU, and e. = Eo(ev denotes the dielectric constant in

vacuum). The normalized propagation constants /?/ku of the

even and odd 17fl modes are plotted in Fig. 7(a) versus the

separation distance s. Both modes are nonleaky, since the

wavenumber ks /kU = 1.4918 of the fundamental TM substrate
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Fig. 7. (a) Normalized propagation constants @/k~ versus the

guide separation s of the even and odd ~~1 modes of the

coupled insulated image guides of Fig. 6(a): .f = 30.23 GHz.
tl = 0.83 cm.tll = 0.38 cm, w = 1.5 cm, sg = 2.62s”, q = 2.55E~,
and S. = CU. (b) Convergence of the results of (a) versus the number N“
of basis functions for s = 1 cm.

mode is less than those in Fig. 7(a). For comparison, the results

of [10] are also included in Fig. 7(a). These were obtained us-

ing pulse subdomain basis functions. The curves of the present

computation appear to be slightly shifted above those of [10].

This discrepancy may be attributed to the different nature

of basis function used, as well as to the different computer

implementations. However, the maximum relative difference

observed is less than 0.1 % and consequently the agreement

between the methods is considered to be satisfactory.

Fig. 7(b) shows the variation of the propagation constants

of Fig. 7(a) versus the number (IV = lVl = lV2 ) of basis

functions used, when s = 1 cm. In selecting the basis

functions, the symmetry of the structure is taken into account,

as described in the last paragraph of Section III. It is observed

that both modes converge simultaneously. Convergence to

within 0.01 ~0 is achieved using only 8 basis functions. In this

case, the total number of unknowns is 3.8 = 24, reduced to

2.8 = 16 if Gauss’ law (15) is applied. Clearly, these numbers

are by far smaller than those required in a subsectional basis

Galerkin’s solution [9]–[ 10]. The efficiency of the present

technique lies in the fact that the unknown field and the

entire-domain expansion terms satisfy the same physical laws.

Finally, it is pointed out that the results of Fig. 7 can also be

obtained without assuming a priori any symmetry in the fields,

at expense of course of the computation time. This shows

another attractive feature of the entire-domain basis function

developed: No initial information needs to be provided for the

electric field distributions.

1.2
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Fig. 8. Normalized c component of the electric field on the right of the

coupled RDWs of Fig. 6(a), when z = (tI + tII)/2 and s = O. (a) Even

mode. (b) Odd mode. The solid lines correspond to the (a) Efl and (b) Ejl

field patterns on the right half of a single guide of width 2W = 3 cm.

An interesting conclusion that can be inferred from

Fig. 7(a), is that for small spacings (s <1 cm), the differences

of even and odd mode wavenumbers from the single strip

propagation constant (marked with a triangle) are not equal,

as the coupled mode theory [2] assumes, Furthermore, when

s decreases to zero the modes finally end-up to the 13;l and

E~l modes of an insulated image guide of width 2W = 3

cm. (Note that this case was treated in Section IV where the

convergence of the spectral integrals was established). The

transition from a configuration of two RDW’s to a single one

of the double width is seen to be continuous, indicating that the

present method can accurately model the dispersion behavior

of strongly coupled systems. This will be also demonstrated

for the associated field distributions.

Fig. 8 presents the normalized dominant z component of

the electric field on the right of the RDW’s of Fig. 6(a),

when s = O and z = (tI + tll)/2. The even mode field

distribution is depicted in (a), while the odd one is depicted
in (b). In producing these plots, the number of basis functions

was increased from N = 5 to N = 8. Convergence in the

field patterns is reached using only 7 basis functions. Fig. 8

also shows the computed (a) E~l and (b) 13.$1field profiles

(solid lines) on the right half of a single guide of width 2W =

3 cm. The latter coincide with the corresponding fields of the

even and odd Efl modes of the coupled system considered

above for s = O.

As a next application, the two unequal coupled rib guides of

Fig. 6(b) are considered with parameters: d = 0.9 pm, D =

1 pm, L = 3 ~m, L’ = 4 ~m, ng = 3.44, ns = 3.40, and

nC = 1.0. A wavelength of AV = 1.15 ~m is assumed.
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Fig. 9. Variation of the normalized modal indices V
modes m ; f!!%%’— 72:]/[72; – n:] of the first two 13fl

of the guide spacing s for the coupled nonidenticrd rib guides of Fig. 6(b):
Au = 1.15 pm, d = 0.9 pm,ll = 1 pm, L = 3 pm, L’ = 4 #m,

rzg = 3.44, rzs = 3.40, and n. = 1.0.

Fig. 9 shows the variation of the normalized modal indices

V = [(~/k. )2 – n:] /[nj – n:] of the first two E;l modes as

a function of the guide spacing s. The presented results were

derived using 9 basis functions for each RDW and compare

very closely to those of a variational method [7]. Since the

structure is not symmetric, the modes cannot be divided into

even and odd modes. Only if both guides were identical, would

these two fundamental modes have even or odd symmetry. For

sufficiently large spacing s, the two modes decouple and tend

to the J!3:l modes of two isolated guides of widths L = 4#m

and L = 3 ,um, respectively.

As a last example, the authors studied the dispersion char-

acteristics of the strip dielectric waveguide of Fig. 6(c) with

parameters tl = 0.82 cm, tll = 0.5 cm, w = 0.65 cm, sg =

2.55EUJEf = 2.62EU, and s. = c.. Fig. 10(a) shows the nor-

malized real parts /?. /kv and Fig. 10(b) shows the imaginary

parts log(a/ko) of the propagation constants ,8 = /3r – ja of

the Efl and E~l modes, when the free space wavenumber ku

is varied. The fundamental TM and TE substrate modes are

also displayed. It is seen that the Efl mode is bound while

the E~l mode is leaky since its dispersion diagram lies below

of that of the TM substrate mode. The results of the present

method have been obtained using 7 basis functions and give

excellent agreement with results in [ 10], for both propagation

and attenuation constants.

Finally, due to theoretical interest, we investigate the tran-

sition of the l?~l mode of Fig. 10 from leaky to bound regime

when losses in the materials are introduced. It is assumed that

(see Fig. 6(c)) s,, = 2.55(1 - jtanf5) and 5.$ = 2.62(1 –

jtanf), where tanc$ stands for the loss tangent. The free space

wavenumber is fixed at kv = 6 cm– 1. Fig. 11(a) depicts

the variation of the attenuation constants log(a/kv ) of the

modes of Fig. 10, versus log(t an 6). It is observed that the
attenuation constant of the Efl mode increases linearly with

log(tan 6). On the other hand, the attenuation constant of the

E~l mode presents a different behavior. For small material

losses (log(tan 6) < –4) it remains constant indicating that the

dominant attenuation mechanism is leakage to the fundamental

TM substrate mode. When log(tan 6) becomes larger than

1.6

15
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Fig. 10. Dispersion diagrams of the first two modes on the strip dielectric
guide of Fig. 6(c): tI = ().82 cm, tII = 0.5 cm, w = 0.65 cm,
Eg = 2.55:., ~f = 2.62sU, and EC = EU. (a) Real part /3,/k. of the
propagation constant. (b) Imaginary part log(–Im(~)/kv) = log(cz/kv ).

–2, then it increases linearly showing that material losses

dominate. In the intermediate region, the 13f1 mode turns from

leaky to bound state. This is accompanied by the migration of

the poles kzs of (30), from the first and third quadrants of the

complex kz plane (Fig. 3) to the fourth and second quadrants,

respectively. To study this transition, we plot in Fig. 1l(b)

the imaginary part Im(kZ, ) of the corresponding pole kzs on

the right half k. plane, as function of the loss tangent. It is

observed that for tan 8 = 0.01 this is zero and for larger

losses it becomes negative rendering the Efl mode non leaky.

At this point, it should be mentioned that a pole in the first

(fourth) quadrant is associated with exponentially increasing

(decreasing) fields in the transverse x-direction [11]. For the

parameters of Fig. 11, the real part of the pole I%Z. is almost

constant: Re (Iczs) = 0.5742. The crossing of the real k~ axis

by the poles does not cause any trouble in the evaluation of

the integrals, provided that the integration path is chosen as

in Fig. 3. This transition was shown in the above discussion

to be continuous.

VI. CONCLUSION

An accurate and efficient integral equation analysis of

coupled rectangular dielectric waveguides has been presented.

The novel concept in this approach lies in the implementa-

tion of a proper set of entire-domain basis functions. These
functions have the simple form of plane waves and satisfy

the appropriate physical laws. In the numerical application

of Galerkin’s method, an asymptotic extraction technique is

employed to speed-up the evaluation of the spectral integrals.

For the demonstration of the present method, single and
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Fig. 11. Attenuation constants of the modes of Fig. 10, versus log(tan 6)

whens,g = 2.55(1—J tana),e~f = 2.62(1—J tana), and L = 6 Cm–l.

(b) Imaginary part of the pole kms as function of log(tan 6) and transition
from leaky to bound state.

coupled dielectric waveguides are treated for various substrate

configurations. Leakage effects in lossy waveguides are also

investigated. Where comparisons are available, it is found that

this technique yields results which compare very closely to

those of other methods.

As revealed through the numerical examples, the expansion

set introduced in this paper is global in the sense that it

facilitates the modeling of both lossy and lossless guides

as well as bound and leaky waves. Even or odd modes

can also be specified although non a-priori information on

the field distributions is necessary. In addition to the rapid

convergence of the spectral integrals, the small number of basis

functions (<10) needed to provide accurate results, contributes

to a significant reduction in the computation time. The above

advantageous features make the proposed set of basis functions

very attractive for the modeling of integrated circuits. Further

research is being carried out to extend the method to three

dimensional structures and anisotropic waveguides.

APPENDIX A

The reflection coefficients RTM and RT~ for the structure

of Fig. 1 are given below

‘I – ‘I #2k,od ~TE = C1 + DIej2~zod (Al)
RTM =

A1+B1 ‘ C1 – D1

[ 1AI =kzo kz1C1C2 – ~k,2~2sI ,

B1 =j~kzl
[
&z2s2c1 + IC.1C2SI1 (A2)

6’1=jkzo[kzl~zcl + Ikzzezsl],
D1 = kz1[kzlS2S1 – kz2C2Cl] (A3)

where

/4=, =@ –k;, k% = w~m, kj = k; + k; (A4)

s, = sin(kz, d;), C~= cos(kz, d,). (A5)

In the case of a structure with semiinfinite substrate (that

replaces the ground plane in Fig. 1) of dielectric permittivity

E3 it is found that

AII – BII ~j2k.~d, RTE = CII – DII ~32~zod (A6)
RTM =

A1l + B1l C1l + D1l

{[
A1l = kzo kz2 :kz1c1c2 – ::k228182 1

[E2

+ jkz3 $Z1CIS2 + :kz281c2 1} (A7)

{[
B1l = kzl kz3 I%Z2C1C2 – ~&1S1S2

1

[
+ 31%Z2:k=2c1s2 + $kz1s1c2 1} (A8)

C1l = I%zo{lcz2[~21C1C2 – ~z2S1S2J

+ jIb3[kzlcl~2 + kzzslcz]} (A9)

D1l = /Cz1{i&3[~z2C1C2 – ~Z1S1S2]

+ jkzz[kzzclsz + k.lslcz]}. (A1O)

APPENDIX B

In this Appendix, the (8) of Section III is derived. Zi (z, z)

denotes the electric field in the ith RDW. We begin with the

definition of a Fourier transform pair as

IlW
Z.(x,.z) = —

(27r)2
~,(k$, kZ)eJ~zZe~hzz dkx diiZ

—cc
(All)

6i(kx, kz) =
~

Z~(x, z)e –jk.ze–jkzz d~ &. (A12)

SL

The electric field vector Ei (~)e–~~v must satisfy the homo-

geneous Helmholtz’s equation for the ith RDW, therefore

Substitution of (Al 1) into (A13) gives

Thus, a non trivial solution can only be obtained if the

following condition holds
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Equation (A15) suggests writing the spectral variables km

and k. as

Taking into account the above expressions, the double

integral of (Al 1) is converted into a single one with integration

variable the spectral angle #~. If we introduce a new integra-

tion coefficient ~, (q$~) instead of ~i (+~ ), (A 11) transforms

to

(A17)

APPENDIX C

The functions A TTLTZ(~),Z&(kx;j, z), and T%n(km;j, i) of
Section IV are computed here

Ann(j) = I dx dz(f:m(x))*(fm( .z))*f&(x)ffn(rz)

S3

—— f,n((k:m)*)f;n( (~:m)*)
e.i(k:m)”~:ej(%m)”~: ‘~

(A18)

Z&(k.;~>i) =<~n(k.) + Kn(-k’)

{

+ for (s, a) = ($,x), Q4,Y), (V,.Z))
(Z, y), (,2’,z)

where
– for (~, a) = (x, y), (x, ~)j(v, x),

(2,X)

(A19)

(A20)

The general expression for the factor \T~n]Pris

Due to the presence of the unit step function U(?C(Z – z’)) in

the double spatial integral of (A23), the value of 12(3) depends

on the relative positions of the RDW’s j and z. We consider

the foIlowing cases for the pair (j, i):

[a] zj > Z; (RDW no. j is located above RDW no. i)

Ij:n(k.) = O, lj~n(kz) = .ff(_m). (kzo) o t?n(–k.o)

(A24)

[b] .z~ z .z~ (RDW no. j is located below RDW no. i)

Lkt(kz) = .f&rn).(–kzo) “ .fz%(kzo)> %t(k-c) = o
(A25)

. {e~[~ln-~zolz~fj(_m). (-kzo)-Tf(-m)* (-k~rt)}

(A26)

+ i;(–rn).(-k:n)}.

Finally, the secondary term [T&]sec is given by

(A27)
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